Exploring Optimum Storage Conditions of Biologics using Calorimetry
Biopharmaceuticals

- Any pharmaceutical drug product manufactured in, extracted from, or semi-synthesized from biological sources

- Biopharmaceuticals have been around for hundreds of years, what has changed?
 - Vaccines
 - Insulin
 - *Monoclonal antibodies (Various)*

Traditional

Patient Self-Administration
Requires High Concentration

% Sales

#1 Lipitor $121 B

14% sales from biologics:
#7 Enbrel
#10 Humira $32 B

Top 10 Drugs 2014

- Shift 4 years later
- 7 out of 10 Biopharmaceutical
- Still a place for Small molecules #2 was Solvadi (Hep C). List also included Crestor and Advair.
- 1 Year Sales Humira: 12.5 B USD
Biopharmaceutical Stability Assessment

- **Background**
 - Biopharmaceuticals are not orally bioavailable
 - Traditional delivery configuration: Intravenous infusion
 - Patient self-administration requires high concentrations (100-200 mg/mL)
 - High concentration Mab formulations concerns
 - Aggregation
 - Denaturation
 - High Viscosity
 - Primary Goal of effective formulation characterization – *Rapidly determine the best buffer and excipient conditions that maximize stability and minimize protein aggregation for at least one year at required high concentrations*
Advanced Microcalorimetric Techniques

- **Formulation Stability Testing - TAM**
 - Direct measurement of heat flow from dilute or high concentration formulations
 - Rapid estimation of formulation stability and shelf life

- Calorimetry quantifies the amount and rate of heat release in terms of heat flow, heat and heat capacity.
 - Non-specific, native, no immobilization
Isothermal Microcalorimetry

Sensitive

- **mW**
 - TAM IV & TAM 48
 - 1-48 – samples
 - Sample Flexibility
 - 1-20 mL sample Vol.
 - Temp Range: 4 – 150°C

µW

- Affinity ITC & Nano ITC
 - 1 – sample
 - Max Sensitivity
 - 1 mL or 190 µL cells
 - Temp Range: 2 – 80°C
 - Optional automated sample handling

nW

- More Sensitive
TAM Stability Testing

Heat Flow exo

Time

Least stable
Most stable
Oxidation of Meclofenoxate Hydrochloride Containing *dl*-α-Tocopherol

Biopharmaceutical Formulation Stability
Protein Thermodynamic Characteristics

Increasing Temperature
DSC of Irreversible Denaturation

\[k_1 \quad \text{→} \quad k_2 \]
Two Different Mechanisms of Protein Denaturation/Aggregation

Denaturation Precedes Aggregation

\[k_1 \gg k_2 \]

Denaturation, Aggregation Occur Simultaneously

\[k_1 \ll k_2 \]
DSC Characterization of Proteins

HEW Lysozyme at pH 8.2

- **Endotherm Due to Denaturation**
- **Exotherm Due to Aggregation/Precipitation**

Tm = 73.3°C

TAM Assay Temps

Cp (cal/(K*mol))

<table>
<thead>
<tr>
<th>T (degrees celsius)</th>
<th>C (cal/(K*mol))</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
</tr>
</tbody>
</table>
Two Events HEWL

TAM of HEWL pH 9: Endotherm Occurs Before Exotherm

Denaturation Precedes Aggregation
Stable mAb5

TAM of mAb5: No Evidence of Separate Exothermic and Endothermic Processes

dQ/dt = k*H*exp(-k*t)
Heat Flow is Proportional to the Amount of Denatured and Aggregated Protein Formed

\[
Heat = v\Delta H_u[U] + v\Delta H_{agg}[Agg]
\]

\[
Heat = v\Delta H_u[P_T]F_u + v\Delta H_{agg}[U]F_{agg}
\]

\[
Heat = v\Delta H_u[P_T]F_u + v\Delta H_{agg}[P_T]F_uF_{agg}
\]

\[
Q = \frac{Heat}{v[P_T]} = \Delta H_uF_u + \Delta H_{agg}F_uF_{agg}
\]

\[
Q = \Delta H_u(1 - e^{-k_u t}) + \Delta H_{agg}(1 - e^{-k_u t})(1 - e^{-k_{agg} t})
\]

Quantity Measured by Calorimeter dQ/dt

\[
dQ/dt = R1*H1*exp(-R1*t) + R2*H2*exp(-R2*t)) + R1*H2*exp(-R1*t) -(R1 + R2)* H2*exp(-(R1+R2)*t) \tag{Eq 6}
\]

If R1 \ll R2 the above equation reduces to:

\[
dQ/dt = R1*(H1 + H2)*exp(-R1*t) \tag{Eq 7}
\]
Non-linear Least Squares Fit (Eq 6) of HEWL pH 9 Heat Flow
TAM Characterization of Proteins

Preliminary Results

Data from Non-linear Least Squares fit to Denaturation/Aggregation model

DSC Scans
Arrhenius Analysis of Rates for HEWL pH 9 obtained at 57, 58 and 59°C

\[\ln k \text{ vs } \frac{1}{T} \]

At 25°C, 357 days
Correlation between the percent of mAb aggregates measured by size exclusion chromatography after ten weeks’ incubation at 25°C and the denaturation/aggregation rates measured by TAM (10 day test).
Early Adopters of IMC Shelf-life

Stability study of a monoclonal antibody: Abbott X in phosphate buffer

DSC trace

Lumry-Eyring:

\[
N \xleftarrow{k_1, k_2} U \xrightarrow{k_3} A
\]

rate = \(\sum \frac{1}{\Delta H_i} \cdot P_i \)

Isothermal calorimetry trace of a at 4 different pH

Power of TAM Measurements

The TAM IV is currently used for small molecules – could it fit this same niche with biopharmaceuticals?

- Can detect denaturation/aggregation kinetics at temperatures below the T_m
- Gives answer to when.
- Provides sensitivity to detect heat signal in volumes of <1 mL and high protein concentrations (>100 mg/mL)
Acknowledgement

Ernesto Frere and Arne Schon. Johns Hopkins University

Biopharmaceutical Stability

Thank You

The World Leader in Thermal Analysis, Rheology, and Microcalorimetry
TA Instruments

HQ – New Castle, DE

TA Microcalorimetry – Lindon, UT
TA Instruments Microcalorimetry Product Line

- MCDSC
- Nano DSC
- TAM Air
- Affinity ITC
- Affinity ITC Auto
- Nano ITC
- TAM IV / 48

Products include 8 Channel and 3 Channel TAM Air, Nano DSC with Autosampler, and Affinity ITC with Std Vol & Low Vol options.
Early Adopters of IMC Shelf-life

Stability study of a monoclonal antibody: Abbott X in phosphate buffer

\[N \xleftarrow{k_1,k_2} U \xrightarrow{k_3} A \]

Lumry-Eyring:

\[\text{rate} = \sum \frac{1}{\Delta H_i} \cdot P_i \]

Isothermal calorimetry trace of a at 4 different pH

In 5 years, >50% of top-selling drugs will be biologics.
MANAGED CARE October 2013. Michael D. Dalzell